CSForestClassifier#
- class empulse.models.CSForestClassifier(n_estimators=100, *, tp_cost=0.0, tn_cost=0.0, fn_cost=0.0, fp_cost=0.0, loss=None, criterion='cost', combination='majority_voting', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None, monotonic_cst=None)[source]#
Cost-sensitive random forest classifier.
- Parameters:
- n_estimatorsint, default=100
The number of trees in the forest.
- tp_costfloat or array-like, shape=(n_samples,), default=0.0
Cost of true positives. If
float
, then all true positives have the same cost. If array-like, then it is the cost of each true positive classification. Is overwritten if another tp_cost is passed to thefit
method.Note
It is not recommended to pass instance-dependent costs to the
__init__
method. Instead, pass them to thefit
method.- fp_costfloat or array-like, shape=(n_samples,), default=0.0
Cost of false positives. If
float
, then all false positives have the same cost. If array-like, then it is the cost of each false positive classification. Is overwritten if another fp_cost is passed to thefit
method.Note
It is not recommended to pass instance-dependent costs to the
__init__
method. Instead, pass them to thefit
method.- tn_costfloat or array-like, shape=(n_samples,), default=0.0
Cost of true negatives. If
float
, then all true negatives have the same cost. If array-like, then it is the cost of each true negative classification. Is overwritten if another tn_cost is passed to thefit
method.Note
It is not recommended to pass instance-dependent costs to the
__init__
method. Instead, pass them to thefit
method.- fn_costfloat or array-like, shape=(n_samples,), default=0.0
Cost of false negatives. If
float
, then all false negatives have the same cost. If array-like, then it is the cost of each false negative classification. Is overwritten if another fn_cost is passed to thefit
method.Note
It is not recommended to pass instance-dependent costs to the
__init__
method. Instead, pass them to thefit
method.- n_estimatorsint, default=100
The number of trees in the forest.
Changed in version 0.22: The default value of
n_estimators
changed from 10 to 100 in 0.22.- lossMetric or None, default=None
The metric to measure the quality of a split. If None, the cost impurity is used.
- criterion{“cost”,, “gini”, “log_loss” or “entropy”}, default=”cost”
The function to measure the quality of a split.
How the measure to estimate quality of a split is weighted.
If
"cost"
: The metric is used normally, without extra weighting.If
"gini"
: The Gini impurity is used to weight the metric.If
"log_loss"
or"entropy"
: The Shannon information gain is used to weight the metric.
- combination{“majority_voting’, ‘weighted_voting’}, default=”majority_voting”
How to combine the predictions of the individual models.
“majority_voting”: the majority vote of the models.
“weighted_voting”: the models are weighted by their oob score calculates with the ….
- max_depthint, default=None
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
- min_samples_splitint or float, default=2
The minimum number of samples required to split an internal node:
If int, then consider min_samples_split as the minimum number.
If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.
Changed in version 0.18: Added float values for fractions.
- min_samples_leafint or float, default=1
The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf
training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.If int, then consider min_samples_leaf as the minimum number.
If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the minimum number of samples for each node.
- min_weight_fraction_leaffloat, default=0.0
The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.
- max_features{“sqrt”, “log2”, None}, int or float, default=”sqrt”
The number of features to consider when looking for the best split:
If int, then consider max_features features at each split.
If float, then max_features is a fraction and max(1, int(max_features * n_features_in_)) features are considered at each split.
If “sqrt”, then max_features=sqrt(n_features).
If “log2”, then max_features=log2(n_features).
If None, then max_features=n_features.
Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than
max_features
features.- max_leaf_nodesint, default=None
Grow trees with
max_leaf_nodes
in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.- min_impurity_decreasefloat, default=0.0
A node will be split if this split induces a decrease of the impurity greater than or equal to this value.
The weighted impurity decrease equation is the following:
N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity)
where
N
is the total number of samples,N_t
is the number of samples at the current node,N_t_L
is the number of samples in the left child, andN_t_R
is the number of samples in the right child.N
,N_t
,N_t_R
andN_t_L
all refer to the weighted sum, ifsample_weight
is passed.- bootstrapbool, default=True
Whether bootstrap samples are used when building trees. If False, the whole dataset is used to build each tree.
- oob_scorebool or callable, default=False
Whether to use out-of-bag samples to estimate the generalization score. By default,
accuracy_score
is used. Provide a callable with signature metric(y_true, y_pred) to use a custom metric. Only available if bootstrap=True.- n_jobsint, default=None
The number of jobs to run in parallel.
fit
,predict
,decision_path
andapply
are all parallelized over the trees.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- random_stateint, RandomState instance or None, default=None
Controls both the randomness of the bootstrapping of the samples used when building trees (if
bootstrap=True
) and the sampling of the features to consider when looking for the best split at each node (ifmax_features < n_features
). See Glossary for details.- verboseint, default=0
Controls the verbosity when fitting and predicting.
- warm_startbool, default=False
When set to
True
, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See Glossary and Fitting additional trees for details.- class_weight{“balanced”, “balanced_subsample”}, dict or list of dicts, default=None
Weights associated with classes in the form
{class_label: weight}
. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y.Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}].
The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))
The “balanced_subsample” mode is the same as “balanced” except that weights are computed based on the bootstrap sample for every tree grown.
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified.
- ccp_alphanon-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha
will be chosen. By default, no pruning is performed. See Minimal Cost-Complexity Pruning for details. See Post pruning decision trees with cost complexity pruning for an example of such pruning.- max_samplesint or float, default=None
If bootstrap is True, the number of samples to draw from X to train each base estimator.
If None (default), then draw X.shape[0] samples.
If int, then draw max_samples samples.
If float, then draw max(round(n_samples * max_samples), 1) samples. Thus, max_samples should be in the interval (0.0, 1.0].
- monotonic_cstarray-like of int of shape (n_features), default=None
- Indicates the monotonicity constraint to enforce on each feature.
1: monotonic increase
0: no constraint
-1: monotonic decrease
If monotonic_cst is None, no constraints are applied.
- Monotonicity constraints are not supported for:
multiclass classifications (i.e. when n_classes > 2),
multioutput classifications (i.e. when n_outputs_ > 1),
classifications trained on data with missing values.
The constraints hold over the probability of the positive class.
Read more in the User Guide.
- Attributes:
- estimator_
RandomForestClassifier
The underlying RandomForestClassifier estimator.
estimators_
list of DecisionTreeClassifierThe collection of fitted sub-estimators.
- classes_ndarray of shape (n_classes,) or a list of such arrays
The classes labels (single output problem), or a list of arrays of class labels (multi-output problem).
n_classes_
int or listThe number of classes seen during fit.
- n_features_in_int
Number of features seen during fit.
Added in version 0.24.
- feature_names_in_ndarray of shape (n_features_in_,)
Names of features seen during fit. Defined only when X has feature names that are all strings.
Added in version 1.0.
- n_outputs_int
The number of outputs when
fit
is performed.feature_importances_
ndarray of shape (n_features,)The impurity-based feature importances.
oob_score_
floatScore of the training dataset obtained using an out-of-bag estimate.
oob_decision_function_
ndarray of shape (n_samples, n_classes) or (n_samples, n_classes, n_outputs)Decision function computed with out-of-bag estimate on the training set.
estimators_samples_
list of arraysThe subset of drawn samples (i.e., the in-bag samples) for each base estimator.
- estimator_
References
[1]Correa Bahnsen, A., Aouada, D., & Ottersten, B. “Ensemble of Example-Dependent Cost-Sensitive Decision Trees”, 2015, http://arxiv.org/abs/1505.04637.
- apply(X)[source]#
Apply trees in the forest to X, return leaf indices.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
dtype=np.float32
. If a sparse matrix is provided, it will be converted into a sparsecsr_matrix
.
- Returns:
- X_leavesndarray of shape (n_samples, n_estimators)
For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in.
- decision_path(X)[source]#
Return the decision path in the forest.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
dtype=np.float32
. If a sparse matrix is provided, it will be converted into a sparsecsr_matrix
.
- Returns:
- indicatorsparse matrix of shape (n_samples, n_nodes)
Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. The matrix is of CSR format.
- n_nodes_ptrndarray of shape (n_estimators + 1,)
The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.
- property estimators_#
The collection of fitted sub-estimators.
- property estimators_samples_#
The subset of drawn samples (i.e., the in-bag samples) for each base estimator.
- property feature_importances_#
The impurity-based feature importances.
- fit(X, y, *, tp_cost=Parameter.UNCHANGED, tn_cost=Parameter.UNCHANGED, fn_cost=Parameter.UNCHANGED, fp_cost=Parameter.UNCHANGED, **loss_params)[source]#
Build an example-dependent cost-sensitive decision tree from the training set.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
The input samples.
- yarray-like of shape (n_samples,)
Ground truth (correct) labels.
- tp_costfloat or array-like, shape=(n_samples,), default=$UNCHANGED$
Cost of true positives. If
float
, then all true positives have the same cost. If array-like, then it is the cost of each true positive classification.- fp_costfloat or array-like, shape=(n_samples,), default=$UNCHANGED$
Cost of false positives. If
float
, then all false positives have the same cost. If array-like, then it is the cost of each false positive classification.- tn_costfloat or array-like, shape=(n_samples,), default=$UNCHANGED$
Cost of true negatives. If
float
, then all true negatives have the same cost. If array-like, then it is the cost of each true negative classification.- fn_costfloat or array-like, shape=(n_samples,), default=$UNCHANGED$
Cost of false negatives. If
float
, then all false negatives have the same cost. If array-like, then it is the cost of each false negative classification.- loss_paramsdict
Additional keyword arguments to pass to the loss function if using a custom loss function.
- Returns:
- selfobject
Returns self.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- property oob_decision_function_#
Decision function computed with out-of-bag estimate on the training set.
- property oob_score_#
Score of the training dataset obtained using an out-of-bag estimate.
- predict(X)[source]#
Predict class of X.
The predicted class for each sample in X is returned.
- Parameters:
- Xarray-like of shape = [n_samples, n_features]
The input samples.
- Returns:
- yarray of shape = [n_samples]
The predicted classes,
- predict_log_proba(X)[source]#
Predict class log-probabilities for X.
The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
dtype=np.float32
. If a sparse matrix is provided, it will be converted into a sparsecsr_matrix
.
- Returns:
- pndarray of shape (n_samples, n_classes), or a list of such arrays
The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_.
- predict_proba(X)[source]#
Predict class probabilities of the input samples X.
- Parameters:
- Xarray-like of shape = [n_samples, n_features]
The input samples.
- Returns:
- probarray of shape = [n_samples, 2]
The class probabilities of the input samples.
- score(X, y, sample_weight=None)#
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Test samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for X.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns:
- scorefloat
Mean accuracy of
self.predict(X)
w.r.t. y.
- set_fit_request(*, fn_cost='$UNCHANGED$', fp_cost='$UNCHANGED$', tn_cost='$UNCHANGED$', tp_cost='$UNCHANGED$')#
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- fn_coststr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
fn_cost
parameter infit
.- fp_coststr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
fp_cost
parameter infit
.- tn_coststr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
tn_cost
parameter infit
.- tp_coststr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
tp_cost
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight='$UNCHANGED$')#
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.