CostSensitiveSampler#
- class empulse.samplers.CostSensitiveSampler(method='rejection sampling', *, oversampling_norm=0.1, percentile_threshold=0.975, random_state=None, fp_cost=0.0, fn_cost=0.0)[source]#
Sampler which performs cost-proportionate resampling.
This method adjusts the sampling probability of each sample based on the cost of misclassification. This is done either by rejection sampling [1] or oversampling [2].
Read more in the User Guide.
- Parameters:
- method{‘rejection sampling’, ‘oversampling’}, default=’rejection sampling’
Method to perform the cost-proportionate sampling, either ‘RejectionSampling’ or ‘OverSampling’.
- oversampling_norm: float, default=0.1
Oversampling norm for the cost. The smaller the oversampling_norm, the more samples are generated.
- percentile_threshold: float, default=0.975
Outlier adjustment for the cost. Costs are normalized and cost values above the percentile_threshold’th percentile are set to 1.
- random_stateint or
numpy.random.RandomState
, optional Random number generator seed for reproducibility.
- fp_costfloat or array-like, shape=(n_samples,), default=0.0
Cost of false positives. If
float
, then all false positives have the same cost. If array-like, then it is the cost of each false positive classification. Is overwritten if another fp_cost is passed to thefit_resample
method.Note
It is not recommended to pass instance-dependent costs to the
__init__
method. Instead, pass them to thefit_resample
method.- fn_costfloat or array-like, shape=(n_samples,), default=0.0
Cost of false negatives. If
float
, then all false negatives have the same cost. If array-like, then it is the cost of each false negative classification. Is overwritten if another fn_cost is passed to thefit
method.Note
It is not recommended to pass instance-dependent costs to the
__init__
method. Instead, pass them to thefit_resample
method.
- Attributes:
- sample_indices_numpy.ndarray
Indices of the samples that were selected.
Notes
code modified from costcla.sampling.cost_sampling.
References
[1]B. Zadrozny, J. Langford, N. Naoki, “Cost-sensitive learning by cost-proportionate example weighting”, in Proceedings of the Third IEEE International Conference on Data Mining, 435-442, 2003.
[2]C. Elkan, “The foundations of Cost-Sensitive Learning”, in Seventeenth International Joint Conference on Artificial Intelligence, 973-978, 2001.
Examples
import numpy as np from empulse.samplers import CostSensitiveSampler from sklearn.datasets import make_classification X, y = make_classification() fp_cost = np.ones_like(y) * 10 fn_cost = np.ones_like(y) sampler = CostSensitiveSampler(method='oversampling', random_state=42) X_re, y_re = sampler.fit_resample(X, y, fp_cost=fp_cost, fn_cost=fn_cost)
- fit(X, y, **params)#
Check inputs and statistics of the sampler.
You should use
fit_resample
in all cases.- Parameters:
- X{array-like, dataframe, sparse matrix} of shape (n_samples, n_features)
Data array.
- yarray-like of shape (n_samples,)
Target array.
- Returns:
- selfobject
Return the instance itself.
- fit_resample(X, y, *, fp_cost=Parameter.UNCHANGED, fn_cost=Parameter.UNCHANGED)[source]#
Resample the dataset.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
- yarray-like of shape (n_samples,)
- fp_costfloat or array-like, shape=(n_samples,), default=$UNCHANGED$
Cost of false positives. If
float
, then all false positives have the same cost. If array-like, then it is the cost of each false positive classification.- fn_costfloat or array-like, shape=(n_samples,), default=$UNCHANGED$
Cost of false negatives. If
float
, then all false negatives have the same cost. If array-like, then it is the cost of each false negative classification.
- Returns:
- X_resampledndarray of shape (n_samples_new, n_features)
The array containing the resampled data.
- y_resampledndarray of shape (n_samples_new,)
The corresponding label of X_resampled.
- get_feature_names_out(input_features=None)#
Get output feature names for transformation.
- Parameters:
- input_featuresarray-like of str or None, default=None
Input features.
If input_features is None, then feature_names_in_ is used as feature names in. If feature_names_in_ is not defined, then the following input feature names are generated: [“x0”, “x1”, …, “x(n_features_in_ - 1)”].
If input_features is an array-like, then input_features must match feature_names_in_ if feature_names_in_ is defined.
- Returns:
- feature_names_outndarray of str objects
Same as input features.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_fit_resample_request(*, fn_cost='$UNCHANGED$', fp_cost='$UNCHANGED$')#
Request metadata passed to the
fit_resample
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit_resample
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit_resample
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- fn_coststr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
fn_cost
parameter infit_resample
.- fp_coststr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
fp_cost
parameter infit_resample
.
- Returns:
- selfobject
The updated object.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.