Skip to main content
Ctrl+K
empulse homepage empulse homepage
  • User Guide
  • API Reference
  • Project Information
  • GitHub
  • PyPI
  • User Guide
  • API Reference
  • Project Information
  • GitHub
  • PyPI

Section Navigation

  • empulse.datasets
    • Dataset
    • load_churn_tv_subscriptions
    • load_upsell_bank_telemarketing
    • load_give_me_some_credit
    • load_credit_scoring_pakdd
  • empulse.metrics
    • Metric
    • max_profit
    • max_profit_score
    • lift_score
    • cost_loss
    • expected_cost_loss
    • expected_log_cost_loss
    • make_objective_aec
    • savings_score
    • expected_savings_score
    • empa
    • empa_score
    • mpa
    • mpa_score
    • expected_cost_loss_acquisition
    • make_objective_acquisition
    • empc
    • empc_score
    • mpc
    • mpc_score
    • empb
    • empb_score
    • auepc_score
    • expected_cost_loss_churn
    • make_objective_churn
    • empcs
    • empcs_score
    • mpcs
    • mpcs_score
    • classification_threshold
  • empulse.models
    • B2BoostClassifier
    • CSBaggingClassifier
    • CSBoostClassifier
    • CSForestClassifier
    • CSLogitClassifier
    • CSThresholdClassifier
    • CSTreeClassifier
    • RobustCSClassifier
    • ProfLogitClassifier
    • BiasRelabelingClassifier
    • BiasResamplingClassifier
    • BiasReweighingClassifier
  • empulse.optimizers
    • Generation
  • empulse.samplers
    • BiasRelabler
    • BiasResampler
    • CostSensitiveSampler
  • API Reference
  • empulse.samplers

empulse.samplers#

The samplers module contains a collection of samplers based on Imbalanced-Learn.

BiasRelabler

Sampler which relabels instances to remove bias against a subgroup.

BiasResampler

Sampler which resamples instances to remove bias against a subgroup.

CostSensitiveSampler

Sampler which performs cost-proportionate resampling.

previous

Generation

next

BiasRelabler

© Copyright 2024 - 2025, Shimanto Rahman (MIT License).